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Overview

• Solar sails are capable of a whole class of orbits beyond
those of the traditional conic section (or Keplerian) orbits.

• These non-Keplerian orbits are one of the advantages of
using solar sail technology.

• A particularly relevant, and interesting, setting to study
non-Keplerian orbits is the Earth-Sun 3-body problem,
which will be the focus of this talk.
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Lagrange points

First some background on classical (conventional spacecraft)
dynamics in the circular restricted 3-body problem:

• The CR3BP means:
• Third body’s mass is negligible compared to the primaries’

(restricted).
• Primaries orbit circularly in the (ecliptic) plane about their

centre of mass.
• We non-dimensionalise units to set the following quantities

to unity:
• Constant of gravitation, G.
• Sum of primaries’ masses: µ + (1− µ) = 1.
• Distance between the primaries.
• Angular velocity of primary masses.



CR3BP Linear Periodic orbits Self-connected Doubly-connected Others

Lagrange points

First some background on classical (conventional spacecraft)
dynamics in the circular restricted 3-body problem:

• The CR3BP means:
• Third body’s mass is negligible compared to the primaries’

(restricted).
• Primaries orbit circularly in the (ecliptic) plane about their

centre of mass.
• We non-dimensionalise units to set the following quantities

to unity:
• Constant of gravitation, G.
• Sum of primaries’ masses: µ + (1− µ) = 1.
• Distance between the primaries.
• Angular velocity of primary masses.



CR3BP Linear Periodic orbits Self-connected Doubly-connected Others

Lagrange points
We consider a rotating coordinate frame in which the
primaries are fixed:
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Lagrange points
There are five equilibrium points called Lagrange points. All
are in the plane of the primaries’ mutual orbit.
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Sail model

• In the rotating coordinate frame the equations of motion of
the solar sail are

d2r
dt2 + 2θ × dr

dt
= a− θ × (θ × r)−∇V ≡ F, (1)

where

V = −
(

1− µ

|r1|
+

µ

|r2|

)
and a = β

1− µ

r2
1

(̂r1.n)2n.

• In this simple model we assume an ideal solar sail. This
is enough to convey a qualitative picture of the dynamics.
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Sail model
• The free parameters are the lightness number β and the

orientation of the unit normal n.
• To place this anlaysis in the near-term we will use

moderate values of β ∼ 0.05, which corresponds to sail
loading σ ∼ 30 g/m2 or characteristic acceleration
a0 ∼ 0.3 mm/s2.

• The orientation is given by the angles γ, φ which the
normal makes with the rotating coordinate axes.
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Fixed points
Fixed points, or equilibrium points, are given by the zeroes of F
in (1). We find continuous surfaces in the x-z plane (sail angle
φ = 0), in fact a two parameter family given by the pair (β, γ):
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Linear system
Letting r → re + δr we Taylor expand F. With δr = (x, y, z)T the
variation in the principal directions, we find to linear order

ẍ− 2ẏ = ax + bz

ÿ + 2ẋ = cy

z̈ = dx + ez

We write this as a first order 6-d system by letting X = (δr, δṙ) to
give

Ẋ = AX,

and the eigenvalues of A are{
± λ1i,±λ2i,±λr

}
The linear eigenvalues are very informative as to the dynamics
of the sail near the fixed point and beyond.
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ÿ + 2ẋ = cy

z̈ = dx + ez

We write this as a first order 6-d system by letting X = (δr, δṙ) to
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Linear system

{
± λ1i, ± λ2i, ± λr

}
• There are two families of

periodic orbits, one
vertical (H-type) and
one horizontal (L-type).

• There are trajectories
which go onto and away
from the fixed point,
these are the stable and
unstable manifolds resp.
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Large amplitude periodic orbits
There is a four parameter family of periodic orbits about fixed
points in the x-z plane. For example, we show here a family of
periodic orbits around a series of equilibria along β = 0.05.
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Polesitter

• Some orbits have a period close to one year. We may use
these orbits to provide a constant view of one of the poles.

Wintertime, Northern Hemisphere Summertime, Northern Hemisphere

t = 0

t = π
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Polesitter

By timing the orbit about the fixed point well, we can narrow the
angle of elevation of the sail when viewed from the pole,
compared to a sail at the equilibrium point:
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Self-connection

{
± λ1i,±λ2i,±λr

}
• As there is a positive and negative real eigenvalue, this

means there is one trajectory going onto the fixed point
and one going away.

• In some cases, these trajectories intersect smoothly, that
is, they are the same.

• This means the dynamics of the system will naturally and
freely bring the sail away from the fixed point only to bring
it back onto the fixed point again (homoclinic path).
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Self-connection

There are many examples of these self-connected fixed points,
with different number loops of the Earth. Here’s a double loop.
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Self-connection

There are many examples of these self-connected fixed points,
with different number loops of the Earth. Here’s a triple loop.
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Double-connection
• There are some cases where the trajectory leaving one

fixed point is identical to the trajectory entering another
fixed point (heteroclinic path).

• This provides us with a ‘free’ transfer between fixed points.
• As with the homoclinic paths, some element of control is

needed here.
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Homoclinic paths of periodic orbits

• Just like fixed points, periodic orbits about fixed points have
a stable and unstable mode. These describe trajectories
that wind onto and off of the periodic orbit.

• These are useful for transfer and self-connection.
• Interestingly, if a fixed point is self-connected, then so is

the periodic orbit about it.
• In fact, every trajectory that winds off the periodic orbit will

wind back onto it in the future. This feature is without
analogue in the classical Earth-Sun case.
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Homoclinic periodic orbits

1.004

In other words, periodic
orbits can inherit the
homoclinic nature of
the equilibrium point
which they orbit.
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Multiply-periodic orbits

{
± λ1i,±λ2i,±λr

}
• There are two continuously

varying frequencies; there are
therefore families of fixed
points where the frequencies
are in ratio, λ1/λ2 ∈ Z.

• We may use these points to
describe multiply-periodic
orbits.
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Summary

• Solar sails admit families of orbits beyond the Keplerian
orbits of conventional spacecraft.

• There are continuous surfaces of fixed points in the solar
sail 3-body problem.

• Fixed points in the x-z plane have the linear dynamical
structure of centres crossed with saddles.

• We may therefore describe families of periodic orbits
displaced above the ecliptic plane.

• We may also find self-connected and doubly-connected
fixed points.

• Other interesting orbits arise with further investigation.
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