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Presentation to Offer

• A candid technical 
introduction to the space     
tow concept

• Insight into the intimate 
interaction of some associated 
structural & navigational 
issues
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The first journal publication on the space tow –
Greschik, “Solar Sail Scalability and a ‘Truly Scalable’ 
Architecture: the Space Tow” – is yet to appear in the 

J. of Spacecraft and Rockets. 
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The Space Tow Promises

• A solution to the most critical 
bottlenecks in solar sail engineering

• An easily practicable approach  

• Near-optimal (net film) propulsion performance 
• Scalability of performance & of technology 
• Manageable dimensions
• Cost-efficient hardware development & testing 
• Industrial perspectives (serial fabrication, off-

the-shelf products)
• Structural & development modularity 

(challenges can be individually addressed)
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The Space Tow Is
A train of panels integrated 
with a tension truss column

• Angular offset from illumination
• Tension provides integrity
• Design challenges (deployment, 

panel, column, thermal)    
mutually independent

• Tabletop hardware development 
• Stows in a stack and self-deploys

once the top panel is lifted
• Intimate coupling of structural 

and attitude dynamics due to 
length and ethereal weight
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Latest Find in a Long Search

Greschik & Mikulas, “Design study of a 
square solar sail architecture,” AIAA-2001-
1259 and J. of S. & R., 39:5(653-661), 2002. 

a limit state, not a design
Striped Concept  

2002

2006-07: support   
by NASA Marshall,   

Edward E. Montgomery
2000

for practical  architectures  Space Tow  
performance + 

practicability

performance + feasibility
Cord Mat Sail  

2005

used by the Encounter
& the L’Garde-NASA 
Langley ST9 projects
Greschik, et al. “The      
Cord Mat Sail – Concept 
Development And Design 
Example,” AIAA-2005-2049. 
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Illustration with Point Design
10000 m2 sail with 50 kg payload

=30o angular offset, =0.8 refl. efficiency
• 13.16 kg gross structural mass,           

1.313 g /m2 sail surface specific mass
• 63.16 kg total system mass
• 0.867 mm/s2 acceleration at 1 AU
• 10.95 km length
• 4.43×108 kg-m2 system mass m. of inertia 
• 2.242×0.25 m stowage envelope
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Point Design

Sail Panels
• Square panels + diagonal booms
• Strips between slits explicitly 

approximate the ideal limit of 
striped mechanics

• Shaped slits of finite width 
offset between adjacent panels

• Handling, fabrication w/ special 
tools (mandrel, etc.)

• Design for maximum size     
with reasonable tooling          
and handling

film sheet

slit on panel underneath

shaped slit

possible slit patterns

compliant cross-strips 
if needed – see plicate 
members, below
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Point Design

Sail Panels
Geometry c = 2.236 m  

= 0.85
A = 5 m2

l = 5.477 m

Material 0.9 m Mylar
E = 5 GPa

= 0.38
=1390 kg/m3

T = 17 ppm

…then mps =6.282 g
s = 1.25 g/m2

n = 2000 
L = 10 954 m

edge
anchor location*
surface area
spacing**

film***
Young’s modulus
Poisson’s ratio
density
coeff. of thermal exp.

panel sheet mass
sheet surface density 
panels
tow length

= 30 o

L=n l

l
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For full illumination (no shading)
For maximum footprint*

**
*** Commercially available
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Point Design

Panel Reinforcement

EIb reduced by some geom. 
nonlinear (cross-stretch & 

Brazier) effects…
…& increased by geom. 

nonlinear cross-lateral 
flexure effect

With  plicate members 
formed by local film 
corrugation

as in a 
plicate 
leaf

• Local film thickness for handling 
• Composite filaments nest in folds
• Members nest in stowage
• Applicable to cross-strip 

reinforcement, too

• Design for cross-stretch 
compliance & out-of-plane 
flexural stiffness EIb

plicate members 
in stowage

the more folds, 
the better ☺
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Point Design

Boom Analysis
• Design: 1 full-diagonal member + 

2 half-diagonal booms *
• Analysis: all clamped at center **
• Safety in loads: FSlds =2.6

(frontal illumination,  .707 AU, =0.9) 
+ infinite payload mass used

• Geom. nonlinear modeling of…  

• Plicate wall strength satisfactory
• Thermal stress relief required *, #

boom compression-flexure coupling***
film slope-pressure coupling
boom-, & film response coupling
thermal effects
plicate cross section def. effects

Graphic-interactive 
finite diff. software  

MS Excel
*

**
Pin base support is compression-compliant

Thermal loads alone can very severely load the structure #

Non-conservative base stiffness
*** Implicit boom strength (stability) control

*

*
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analysis model
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Boom Specs & Performance
Point Design

Geometry do = 25.4 m 
go = 6 m
tw = 6.35 m
nf =7

Wall Mylar
Filament carbon fiber  

E = 560 GPa
=1800 kg/m3

T = -1.5 ppm 
Adhesive a = 1600 kg/m3

…boom w = 1.4 mm
EIb = 91 Nmm2

etip = 13 cm
sL = 43.4 mg/m

filament diameter
adhesive-filled gap
wall thickness
number of folds

→ film sheet mat.
Thornel K-1100 2k *
composite Young’s mod.
composite density
coeff. of thermal exp. 
density (in gap)**

width
flexural stiffness
tip deflection #

linear density
*

**
#
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ww=200 m

hw=450 m
w=70.85 o

No stiffness
For maximum stiffness

8.5% of boom length 
(of half diagonal)



12

Point Design

Performance & Stowage
1 panel mps =6.273 g 

mpb = 0.274 g 
mp = 6.547 g

Fp =27.4 N
All panels m = 13.094 kg

F = 54.76 mN

Stowage hp = 38 m 
gc = 87 m

Hs =25 cm

film sheet less booms
mass of four booms
gross mass
4.4% over net film mass
panel thrust*
all panels’ mass
total tow thrust*

panel net stowage depth
gap:  fill** + filaments
total → 0.125 mm / panel
stowage stack height

hp

• Filaments between stacked plicate 
booms laid in loose fold direction

• Gap fill** contributes to stack mass
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** To evaporate in space
=30 o, 1 AU, refl = 0.8*
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Two Deployment Paradigms
Point Design

Deployment
powered by 

propulsion on 
deployed  

panels 

Reduced force w/ offset on 
partially deployed panel

Passive
Panels are 

“left behind” 
by the stack 

while separating 
from payload

→ Greschik, et al. “The Nodal 
Concept of Deployment and 

the Scale Model Testing of its 
Application to a Membrane 

Antenna,” AIAA-1999-1523. 

Nodal

• Instead of “kicking” 
the stack off the 
spacecraft, …
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With photon propulsion (via sail 
lobes laterally deployed off the top 
panels, or with the help of a pilot 
sail)

• The first few panels 
pre-deploy…
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Mechanically (e.g., w/ boom to 
lift them off the stack), or… Spacecraft may 

autonomously leave the 
stack (with initial thrust 
impulse or sustained 
thrust) 
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Point Design

Filament Truss Column
Shear stiffness indirectly 
destabilizes attitude

• Shear compliance would 
permit truss self-
alignment to eliminate 
the torque…

• …so drop the diagonals!
• Joint locations     

marked on fibers      
with precision

• Design to control 
thermal & slew  
response 

The in-plane thrust 
components 
induce an    
attitude         
torque

M = F lF
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Geometric nonlinear truss 
shear stiffness remains:

KT = (GA =) Ftow .

and varies along the 
truss length.
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Geometry c =1.901 m
nc = 16 

Filaments dc = 6.4 m 
Material carbon fiber  

E = 240 GPa
Ru = 4.28 GPa

=1770 kg/m3

T = -0.6 ppm 

…then mtr = 39.3 g
mtow = 13.13 kg
EItr = 439.3 Nm2 

dL = 0.488 m
FSfail =200
rmin,c = 0.2 mm

truss depth
fil. per longeron

diameter
Thornel T-650/35 *
fiber Young’s mod.
strength
fiber density
coeff. of th. exp. 

truss mass
total tow mass (truss + panels + interface)
flexural stiffness
tow elongation
safety against cord failure **
min. radius of cord bending ***

FSfail= 158 for infinite payload mass*
**

For lowest CTE
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Limit cord corner radius in stowage to not break fiber***

Point Design

Truss Column Design
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Point Design

Dynamics: Vibration
• Approximate assessment 

via chain swing analogy

• Geometric nonlinear model, 
finite difference analysis

fi =λi (geq / L )½ / (2 )

Equiv. acc. of grav.:   
geq =Ftow,max  /mtow = .

= 43.76 mN / 13.13 kg 
=3.302mm/s2

Fixed support =  
massive payload 
. → reduces frequency
No flexural stiffness 
. → reduces frequency L
Infinite shear stiffness 
. → increases frequency

1 
2
3 

Mode f  [1/s] T [h]
2.64
1.15
0.73 

1.2026 
2.7602
4.3266 378.1

105.1×10-6

241.2×10-6

×10-6

1
Mode
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Shear and flexure effects 
properly accounted for.

f  [1/s] T [h]
2.43114.5×10-6
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* Reference number; not from thermal analysis

  T T/ 2

M = 21.64 Nmm 
Q =2.785 mN 

 = 4.89×10 -11 rad / s2

t30 = 57.50 h
.

etip,e0.5 =1656 m 
tip,e0.5=11.85 o 

attitude torque
shear at payload

rotational acceleration
steady-to-steady          
30 o turn time

tip deflection
tip rotation

M

Point Design

Thermal & Slew Loads
• Gradient across truss: T=50oC *

etip,T   T T/ 2
etip,T50 = 944.7 m 

tip,T50 =9.91 o
tip deflection
tip rotation tip,T

• Steady state slew             
by ep=0.5 m payload offset

etip,e

tip,e
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Nonlinear Model Is Necessary
Point Design

• Linear prediction for moderate 
loads (previous page):
10 o rotations

 = 30 o 40 o

 = 30 o 20 o
cos2  =0.75 0.59,   -22%
cos2  =0.75 0.88,   +18%

Impact on the cosine-squares:
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Nonlinear approach is 
needed to model even the 
steady-state slew response

• Error margin: 20% for thrust 
alone, possibly with further 
nonlinear amplification

27
-2

9,
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00
7,

. 

Linear results derived 
from the stiffness, shear, 

& moment functions 
defined on the 

stress-free 
shape.
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Point Design

Absolutely necessary!

etipebow

M• Another observation:
ep = 0.5 m etip = 1656 m 

ebow = 278.5 m

• Half a meter tip mass offset 
cannot effect this large bow –
this response is impossible.

View with 
tip chord 
oriented 
upright ebow >> ep
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Result is unrealistic if the 
mutual coupling of column 
deformations, flexibility, 
and thrust variation is 
ignored.

 

ep
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The Structural Feature That…
…governs the space tow paradigm 
and, as seen, dominates design and 

analysis considerations is a uniquely
intimate coupling of structural

and navigational issues. 
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with the outstanding advantage of an 
immediately practicable – modular, 

incremental, and cost-efficient –
development path.
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Along This Path
Work is progressing toward 
the following milestones: 

• Nonlinear prediction of steady-state slew response
• Demonstration of full maneuver feasibility
• Stability: attitude and spin control strategies
• Improve tool for detailed, final panel design
• Trajectory design and mission applicability

• Steps toward a comprehensive 
structural and mission design toolkit
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Final Note
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• Despite its performance parameters, … 
• …the space tow’s most advantageous 

characteristic remains technological 
scalability – the scalability of design, 
fabrication, handling, testing, mission 
operation, and control issues.  

• Designs even with small dimensions can 
be representative of full-size missions. 

• An economy of development unheard of 
for more elaborate sails results.
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Extra Slides 
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Example with Extreme Length
100000 m2 space tow = ten 100×100 m sails

=30o offs., =0.8 refl. eff., 200 kg payload  
• 131.6 kg gross structural mass,           

1.313 g /m2 sail surface specific mass
• 331.6 kg total system mass
• 2.517 mm/s2 accel. at 1 AU
• 109.5 km length
• 2.242×2.5 m stowage
• 20 × fiber safety
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Steering / control with 
pilot sail at tail end of 
tow (away from the 
spacecraft) may be 
considered. 

*

*
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Applicability & Limitations
No known mechanical issues inherently 
limit length or applicability. 
However, viability in specific contexts is 
contingent upon the success of low-risk and  
-cost work to answer challenges such as…
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• Attitude control, navigation 
• Truss / tow straightness vs. filament 

length precision
• E-magnetic & gravity gradient effects
• Deployment
• …etc.


	Some Structural, Mission Performance, and Navigational
	Presentation to Offer
	The Space Tow Promises
	The Space Tow Is
	Latest Find in a Long Search
	Illustration with Point Design
	Sail Panels
	Sail Panels
	Panel Reinforcement
	Boom Analysis
	Boom Specs & Performance
	Performance & Stowage
	Two Deployment Paradigms
	Filament Truss Column
	Truss Column Design
	Dynamics: Vibration
	Thermal & Slew Loads
	Nonlinear Model Is Necessary
	Absolutely necessary!
	The Structural Feature That…
	Along This Path
	Final Note
	Extra Slides
	Example with Extreme Length
	Applicability & Limitations

